Definition of WAM Terms
WAM (Wire Animated Movies) - Small animation files which are composed entirely of line endpoints and simple (1 byte) drawing instructions.

Atari WAM files (.awm) - The Atari WAM files run only in Atari's 160x96 two-color graphics mode, so x-values are 0 to 159 and y-values are 0 to 95. The Atari WAM files were made from the higher resolution PC WAM files, put on "virtual" floppy disks for use with the Atari800Win emulator, and finally (along with the WAM player) sent to physical Atari disks using the APE hardware interface.

Atari WAM Player - The player, along with the .awm animation files, resides on any of 3 Atari floppy disks (physical disks and emulated disks). When the disk is booted, a menu comes up showing the files on the disk and asking the user for the name of one of them. The user is then asked whether they want a black background (white lines on black) or the opposite (black on white). The final question is how fast to play the animation (in "jiffies"). One jiffy is 1/60th of a second, so 5 jiffies, for example, would be 12 frames per second (the minimum speed for an animation to look decent). The "page flipping" feature built into the Atari allows an animation frame to be drawn in one area of memory while the previous frame is being displayed in a different area. This means no "flickering" between frames. Also, it was very easy to set a "clock" so that all the frames were displayed consistently at one frame rate. All of the animations on the Atari disks will play at least at 12 fps, and the simpler ones can be played faster than that.

Bresenham's Line-drawing Algorithm - Developed by Jack Bresenham at IBM in 1962 (to control plotters), this simple routine "draws lines" in a computer by turning sets of endpoints (X and Y) into lighted pixels on a (raster) screen. It is easily implemented in assembly language or in hardware, and is (to my knowledge) the way straight lines are drawn on all modern computers. The Atari WAM Player uses a version of Bresenham to draw lines in assembly language.

PC WAM files (.wam) - The PC WAM format is 256x240 and could theoretically use any number of colors. Because PC's are so fast, the players written in Quick Basic 3.0 (QB) and Visual Basic (VB) can scale the endpoint values "on the fly" and play these animations in any resolution the computer supports. Although Quick Basic 3.0 and Visual Basic are no longer supported by modern PC operating systems, it would be pretty simple to write a player in a modern language like Java.

Quick Basic WAM Player - The player brings up a requester asking the user which file to play, and then offers a choice of several resolutions. This possible because, depending on which resolution is selected, endpoint data in the file is simply multiplied by the appropiate scaling factor just before each line is drawn. The standard Quick Basic line-drawing commands are used (no assembly language needed) and Quick Basic's PCOPY command allows a form of page-flipping which eliminates flicker, much like the Atari player. Due to the limitations of DOS displays (I believe) playback speed is limited to either 18 fps or 35 fps (strange!). I selected 18 as the default, as it mimics most closely the frame rates of the Atari player.
Self-playing WAM files (.exe) - These "click and play" animations are actually compiled Quick Basic programs (the player and the animation data are combined), with the WAM data stored as Basic DATA statements. They are currently set to run in 640x350 resolution at 18 frames per second. Their "full screen" display makes them attractive and dynamic, but unfortunately they only work properly on older PC's.

Visual Basic WAM Player - I made a few variations of a player for Visual Basic 3.0 for Windows, and although they were interesting, they had some problems. First of all, I couldn't figure out any way to stop the animations without having them play to the end, which meant that they couldn't "loop" (they had to play just once). Secondly, they "flickered" because I couldn't find a way to implement "page flipping" in Visual Basic, like I could in Quick Basic and on the Atari. Thirdly, there was no way to establish an stable play rate (frames per second), as I could with the Atari and with Quick Basic. Visual Basic would play each animation as fast as it could (too fast), unless I gave it a "delay number", and that number would vary from one animation to the next!

How The Animations Originated:

Forms-In-Flight - One the first Amiga 3D animation programs, it was unusual in that it stored animations as sets of 2D endpoints (to use for plotters), and the animation player converted them to bitmap frames just before they were played! The structure of these files made it possible to convert them directly to WAM files without tracing (which is why those WAM animations don't look "shaky").

WAMTrace - A Visual Basic program which displays bitmap frames as a background for tracing lines. As lines are traced, they are automatically recorded as enpoint data and put into a WAM file. Hotkey commands are used to generate the control bytes in the WAM file, such as "start new line" and "end of frame". A slider bar allows easy navigation between frames. The only downside to WAMTrace is that it's awkward to stop tracing the the middle of an animation. I had to restart and make a second animation, and then use a hex editor to join the two files together! WAMTrace created PC WAM files in 255x240 resolution, which were then converted to Atari WAM files (160x96) with a simple scaling program.
Aegis Animator - The original 2D animation program for the Amiga, I used it to create some of the WAM animations, like "Starline" and "Teeter". Aegis Animator files were converted to PC bitmap frames using Jim Kent's other programs (Zoetrope for the Amiga and Autodesk Animator for the PC) and then traced into WAM format using WAMTrace.

Lightwave (PC) and trueSpace - Two 3D animation programs for the PC (both originally for Amiga) which I used to generate frames to trace into WAM format.

